IMC: Schedule

LectureCommencingKey TopicsLecturesReferences
114/01/2025
  • Lecture 1
  • Introduction and shift chiper
See the end of the slides
217/01/2025
  • Lecture 2
  • Historical ciphers
  • Secure encryption
  • Perfect secrecy
See the end of the slides
321/01/2025
  • Lecture 3
  • Perfect secrecy (cont.)
  • One time pad
See the end of the slides
428/01/2025
  • Lecture 4
  • One time pad (cont.)
  • Perfect/computational indistinguishability
See the end of the slides
531/01/2025
  • Lecture 5
  • Computational Indistinguishability (cont.)
  • Pseudorandomness and PRGs
See the end of the slides
64/02/2025
  • Lecture 6
  • Pseudo one-time-pad
See the end of the slides
77/02/2025
  • Lecture 7
  • CPA security
  • PRFs and PRPs
See the end of the slides
811/02/2025
  • Lecture 8
  • CPA secure encryption
See the end of the slides
914/02/2025
  • Lecture 9
  • Block ciphers
  • CCA security
See the end of the slides
1025/02/2025
  • Lecture 10
  • Message integrity
  • MAC 
See the end of the slides
1128/02/2025
  • Lecture 11
  • Security reduction recap 
message-authentication-code.pdfSee the end of the slides
124/03/2025
  • Lecture 12
  • Message authentication (cont.)
  • Hash functions
See the end of the slides
137/03/2025
  • Lecture 13
  • Authenticated encryption
See the end of the slides
1411/03/2025
  • Lecture 14
  • Group assumptions
  • Diffie-Hellman key exchange
See the end of the slides
1518/03/2025
  • Lecture 15
  • Public-key encryption
  • RO and Digital Signatures (until the description of the signature scheme) 
See the end of the slides
1621/03/2025
  • Lecture 16
  • Digital Signatures: (Security proof) 
See the end of the slides
1725/03/2025
  • Lecture 17
  • Digital Signatures (Security proof)
See the end of the slides
1828/03/2025
  • Zero-Knowledge
See the end of the slides
191/04/2025
  • Extra tutorial from the Lecturer. We will discuss the solutions of the past year exam
The exam for 2024/2025 will have a a different structure but the type of questions will be similar. More information will be provided during the lectures

License
All rights reserved The University of Edinburgh